DISTRIBUTIONAL CONVERGENCE OF BDF (BACKMARD DIFFERENTIATION FORMULAS) APP. (U) NORTH CAROLINA STATE UNIV AT RALEIGH CENTER FOR RESEARCH IN S. L CAMPBELL 10 NOV 87 CRSC-TR-091787-01 F/G 12/3 AD-A198 819 1/1 UNCLASSIFIED NL AD-A190 819 | 2 | |---| | | | Security CLASSIFICATION | 16. RESTRICTIVE MARKINGS | |---|--| | 28. SECURITY CLASSIFICATION AUTY PELECIE 28. DECLASSIFICATION / DOWNGRAD SCHURLET 9 1988 | 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited. | | PERFORMING ORGANIZATION RE- | S. MONITORING ORGANIZATION REPORT NUMBER(S) | | PERFORMING UNDARIZATION RETURNER(S) | 4.70 cm | | | 0, 19,0 | | So. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBO (If applicable) North Carolina State University | | | ic ADDRESS (City, State, and ZIP Code) | AFOSR/NM | | Raleigh, NC 27695-8205 | 7b. ADDRESS (City, State, and ZIP Code) ATOSK NH. Bldg 410 Bolling AFB DC 20332-6448 | | Ba. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR 8b. OFFICE SYMBO (If applicable) **NM: | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER APOSR-87-0051 | | AFOSR AFOSR :- NM: AFOSR/RM: | 10. SOURCE OF FUNDING NUMBERS | | B1dg 410 | PROGRAM PROJECT TASK WORK UNIT ACCESSION NO. | | Bolling AFB DC 20332-8448 11. TITLE (Include Security Classification) | 61102F 2304 A1 : | | 3a. TYPE OF REPORT 13b. TIME COVERED FROM TO 16. SUPPLEMENTARY NOTATION | 14. DATE OF REPORT (Year, Month, Day) November 10 , 1987 7 | | 7. COSATI CODES 18 SUBJECT TERM FIELD GROUP SUB-GROUP | MS (Continue on reverse if necessary and identify by block number) | | | | | 9. ABSTRACT (Continue on reverse if necessary and identify by blo | ck number) | | the solutions of $Ex' + Fx = f$ can | the backward differentiation approximation of fail to converge even pointwise in an initial ne approximations converge in a distributional distributional. | | 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED | 21. ABSTRACT SECURITY CLASSIFICATION | | 12a. NAME OF RESPONSIBLE INDIVIDUAL | 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL | | Mai. James M. Crowley | | All other editions are obsolete. # Distributional Convergence of BDF Approximations to Solutions of Descriptor Systems Stephen L. Campbell* Department of Mathematics and Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8205 CRSC Technical Report CRSC 091787-01 November 10, 1987 #### Abstract It has been frequently observed that the backward differentiation approximation to the solutions of Ex' + Fx = f can fail to converge even pointwise in an initial boundary layer. This note shows that the approximations converge in a distributional sense even if the exact solution is also distributional. #### 1 Introduction In a fundamental series of papers [3], [4], [5], Cobb investigated the distributional solutions of the linear time invariant descriptor system $$Ex' + Fx = f \tag{1}$$ ^{*}Research supported in part by the Air Force Office of Scientific Research under Grant AFOSR 87-0051 and by the National Science Foundation under Grant DMS-8613093 and showed that the distributional solutions were the limits, in a distributional sense, of the solutions of the regularized system $(E + \epsilon F)x' + Fx = f$ as $\epsilon \to 0$. These impulsive solutions were also studied via transfer functions by Verghese [9]. One of the first class of numerical methods, other then the reduction of the pencil $\lambda E + F$, to be applied to (1) were backward differentiation formulas (BDF) [7], [8]. In [8] it was shown that the BDF approximations converge to the true solution outside of an initial boundary layer of nonconvergence. The simplest of the BDF methods is the implicit Euler's method with fixed stepsize h which is $$E\frac{x_{i+1}-x_i}{h}+Fx_{i+1}=f_{i+1}$$ (2) where $t_i = t_0 + ih$, $f_i = f(t_i)$, and x_i is the approximation of $x(t_i)$. In [2] it is observed that the boundary layer errors look a lot like approximations of distributions. This note will show that the BDF approximations actually converge in a distributional sense on the entire interval of definition to the solution of (1) even if that solution is distributional. ### 2 Results TO BESIDENCE FOR THE PROPERTY OF We assume that E, F are $n \times n$ matrices and that $\lambda E + F$ is a regular pencil so that $\det(\lambda E + F) \not\equiv 0$. We also assume that E is singular, and, in order to avoid trivial special cases, that the index of (1) is $k \geq 2$. That is, the order of the pole at infinity is at least two. Equivalently, the solutions of (1) will involve k-1 derivatives of the forcing function f. We assume that f is at least k times continuously differentiable. In order to establish convergence for general fixed step BDF methods, it suffices to consider (2). Notation is simplified by taking the initial time t_0 to be zero. Given a sequence $\{x_i\}_{i=0}^{\infty}$ we identify it with the function $$\sum_{i=0}^{\infty} x_i [H(t-ih) - H(t-(i+1)h)]$$ where H is the unit step (Heaviside) function. If $\{x_i\}$ is given by (2), then it gives an O(h) approximation to the true solution x(t) on the interval $[kh \ T]$ for fixed T [8]. We are interested in what happens on $[0 \ kh]$. By using the Kronecker structure of the pencil, and the well known theory of singular systems [1], [2], it suffices to consider the special case $$Nx' + x = f \tag{3}$$ where N is a $k \times k$ nilpotent Jordan block $$N = \begin{bmatrix} 0 & 1 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \\ 0 & \cdot & \cdot & 0 \end{bmatrix}$$ Then (2) becomes $$(N+hI)x_{i+1} = Nx_i + hf_{i+1}$$ (4) We first consider the associated homogeneous equation for (3) $$Nx' + x = 0, \quad x(0) = x_0$$ (5) The solution of (5) is SECOND PROCESS OF THE CONTRACT $$x = \sum_{i=0}^{k-2} (-1)^i \delta^{(i)} N^{i+1} x_0 \tag{6}$$ where $\delta^{(i)}$ is the ith derivative of the delta function $\delta(t)$. The backward Euler approximation for (5) given by (4) is $$x_{i+1} = (N+hI)^{-1}Nx_i = [(N+hI)^{-1}N]^{i+1}x_0$$ (7) which is zero for $i + 1 \ge k$. Let p = 1/h. Then $$(N+hI)^{-1}N = \begin{bmatrix} 0 & p & -p^2 & \cdot & (-1)^k p^{k-1} \\ 0 & 0 & p & \ddots & \cdot \\ & \cdot & \cdot & \cdot & -p^2 \\ & \cdot & \cdot & \cdot & p \\ \vdots & & \cdot & \cdot & 0 \end{bmatrix}$$ and for $1 \le i \le k-1$, $$[(N+hI)^{-1}N]^{i} = \begin{bmatrix} \underbrace{0 \cdots 0}_{i \text{ zeros}} & p^{i} & \cdots & (-1)^{k-i+1} \begin{pmatrix} k-2 \\ i-1 \end{pmatrix} p^{k-1} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & & 0 \end{bmatrix}$$ (8) where the (i+j+1)th superdiagonal of (8), for $0 \le j \le k-1-i$ has entries $(-1)^{i+j+1} \binom{i+j-1}{i-1} p^{i+j}$. Using (8) and comparing (7) to (6) and equating the coefficients of like coordinates of x_0 , we find that we need to show that $$z_h^{[i]} \to \delta^{(i)} \tag{9}$$ as $h \to 0^+$ where $$z_h^{[i]} = \frac{1}{h^{i+1}} \sum_{j=0}^{i} (-1)^j \binom{i}{j} \left[H(t - (j+1)h) - H(t - (j+2)h) \right]$$ and (9) is taken in the weak distributional sense. That is, $$\lim_{h \to 0} \int_0^\infty z_h^{[i]}(t)g(t)dt = \int_0^\infty \delta^{(i)}(t)g(t)dt = (-1)^i g^{(i)}(0)$$ (10) for every infinitely differentiable test function g on $[0 \infty)$. Let w'(t) = g(t) so that $$\int_{0}^{\infty} z_{h}^{[i]}(t)g(t)dt = \frac{1}{h^{i+1}} \sum_{j=0}^{i} (-1)^{j} \binom{i}{j} \int_{(j+1)h}^{(j+2)h} g(t)dt$$ $$= \frac{1}{h^{i+1}} \sum_{j=0}^{i} (-1)^{j} \binom{i}{j} \left[w((j+2)h) - w((j+1)h) \right]$$ (11) Define the operators S, Δ by $Su_i = u_{i+1}$ and $\Delta u_i = u_{i+1} - u_i$ so that $\Delta = S - I$. Then (11) becomes $$= \frac{1}{h^{i+1}} \sum_{j=0}^{i} (-1)^{j} {i \choose j} (S^{j+2} - S^{j+1}) w$$ $$= \frac{1}{h^{i+1}} \sum_{j=0}^{i} (-1)^{j} {i \choose j} \Delta S^{j+1} w$$ $$= \frac{1}{h^{i+1}} \Delta \left[\sum_{j=0}^{i} (-1)^{j} {i \choose j} S^{j} \right] S w$$ $$= \frac{1}{h^{i+1}} \Delta (I - S)^{i} S w$$ $$= \frac{(-1)^{i}}{h^{i+1}} \Delta^{i+1} S w$$ But $h^{-i-1}\Delta^{i+1}w$ converges to $w^{(i+1)}=g^{(i)}$ [6] and thus (9) holds. Now consider the nonhomogeneous problem (3). By linearity the solution of (3) is made up of a smooth solution on $[0\ T]$ and (possibly) an initial impulse satisfying (3) with f=0. The preceding argument shows that the approximation for the distributional part converges. It suffices then to consider the approximation of the smooth solution. Let x_{0T} be the exact initial value of the smooth solution of (3). Simple examples show that for the first k steps the error in using (4) can be unbounded as h goes to 0 even if $x_0 = x_{0T}$. We wish to show that, in fact, the error goes to zero weakly in the distributional sense. By iterating (4) backwards, it can be shown that there is an initial condition x_{0h} such that taking $x_0 = x_{0h}$ leads to a solution of (4) which gives a uniformly O(h) approximation to the smooth solution of (3) on $[0\ T]$ and also $$x_{0h} = x_{0T} + h\phi(h) \tag{12}$$ where ϕ has a series expansion $\phi(h) = \sum_{i=0}^{k^2} \phi_i h^i + O(h^{k^2})$. Now let $x_i^{[0]}$ be the solution of (4) with $x_0 = x_{0h}$, while $x_i^{[T]}$ is the solution of the associated homogeneous equation (7) with $x_0 = x_{0T}$ and $x_i^{[pi]}$ is the solution of the associated homogeneous equation with $x_0 = \phi_i$. Then $$x_i^{[0]} = x_i^{[T]} + h \sum_{i=0}^{k^2} h^i x_i^{[pi]} + O(h)$$ But $x_i^{[0]}$ is a uniformly O(h) approximation of the unique smooth solution of (3). From the argument used to prove (9) we have that the $x_i^{[pi]}$ converge to distributions, so that $h^{i+1}x_i^{[pi]}$ converges to zero as a distribution as h goes to zero. In summary, we have shown: **Theorem 1** Suppose that $\lambda E + F$ is a regular pencil and x_0 is an arbitray initial condition. Let $\{x_i\}$ be the backward Euler approximation using (2). Then this approximation converges weakly in the distributional sense to the distributional solution of Ex' + Fx = f, $x(t_0) = x_0$. #### 3 Comments THE TAXABLE PASSESS. FREEZE We consider the main result of this paper to be primarily of theoretical interest. However, it is interesting to note that if one has the system (1) and is interested in the possible impulsive behavior, then impulsive behavior can be modeled by using (2). This simulation is much quicker, and easier to program, then a code to compute the pencil decomposition. Also note that if the quantities of interest involve weighted integrals of the solution, then these quantities can also be estimated using backward differentiation formulas. ## References - [1] S. L. Campbell, Singular Systems of Differential Equations, Pitman, 1980. - [2] S. L. Campbell, Singular Systems of Differential Equations II, Pitman, 1982. - [3] J. D. Cobb, On the solutions of linear differential equations with singular coefficients, J. Diff. Equations 46 (1982), 310-323. - [4] J. D. Cobb, A further interpretation of inconsistent initial conditions in descriptor-variable systems, IEEE Trans. Automatic Control, AC-28 (1983) 920-922. - [5] J. D. Cobb, Fundamental properties of the manifold of singular and regular linear systems, J. Math. Anal. Appl. 120 (1986) 328-353. - [6] G. Dahlquist, A. Björck, Numerical Methods, (Translated by N. Anderson) Prentice-Hall, 1974. - [7] C. W. Gear, Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit Theory, CT-18 (1971), 89-95. - [8] R. F. Sincovec, A. M. Erisman, E. L. Yip, and M. A. Epton, Analysis of descriptor systems using numerical algorithms, IEEE Trans. Automatic Control, AC-26 (1981), 139-147. - [9] G. C. Verghese, B. C. Levy, and T. Kailath, A generalized state-space for singular systems, IEEE Trans. Automatic Control, AC-26 (1981), 811-831. END DATE FILMED 5-88 DT10